11-1. Органическое соединение **X** под названием «*-*у*ин**а* *и**о**» обесцвечивает бромную воду и дает осадок при прибавлении аммиачного раствора оксида серебра. При кипячении 8,4 г вещества **X** в этиловом спирте в присутствии кислоты образуется 11,2 г. вещества **Y**. Нагревание **Y** в воде в присутствии кислоты дает обратно вещество **X**. Определите структурную формулу **X**. В ответе запишите название вещества, заменив звездочки.

Ответ: 3-бутиновая кислота

11-2. Органическое соединение **X** под названием «*-*у*ин**а* *и**о**» обесцвечивает бромную воду, но не дает осадок при прибавлении аммиачного раствора оксида серебра. При кипячении 8,4 г вещества **X** в этиловом спирте в присутствии кислоты образуется 11,2 г. вещества **Y**. Нагревание **Y** в воде в присутствии кислоты дает обратно вещество **X**. Определите структурную формулу **X**. В ответе запишите название вещества, заменив звездочки.

Ответ: 2-бутиновая кислота

11-3. Отгадайте вещества A и B, напишите уравнение реакции и расставьте недостающие коэффициенты:

 $A + B = 1BaSO_4 + 4H_2O$

В ответе запишите только одно число - сумму всех коэффициентов (не забудьте единичные коэффициенты).

Ответ: 10

11-4. Отгадайте вещества A и B, напишите уравнение реакции и расставьте недостающие коэффициенты:

 $A + B = 1Na_2SO_4 + 1N_2$

В ответе запишите только одно число - сумму всех коэффициентов (не забудьте единичные коэффициенты).

Ответ: 4

11-5. При присоединению 1 моль бромистого водорода к 1 моль органического соединения $\bf A$ образовалось вещество $\bf B$ содержащее 85,07% брома по массе, а также углерод и водород. Определите вещество $\bf A$, если известно, что его молярная масса не превышает 160 г/моль. В ответе запишите количество атомов углерода и водорода в $\bf A$ цифрами через запятую, без пробелов (например, для $\bf C_5 \bf H_{10}$ в ответе напишите 5,10).

Ответ: 2,3

11-6. При присоединению 1 моль бромистого водорода к 1 моль органического соединения $\bf A$ образовалось вещество $\bf B$ содержащее 79,16% брома по массе, а также углерод и водород. Определите вещество $\bf A$, если известно, что его молярная масса не превышает 160 г/моль. В ответе запишите количество атомов углерода и водорода в $\bf A$ цифрами через запятую, без пробелов (например, для $\bf C_5 \bf H_{10}$ в ответе напишите 5,10).

Ответ: 3,5

11-7. Навеску соли натрия массой 1,000 г растворили в воде. Последующее добавление раствора ацетата магния привело к выпадению 0,7417 г осадка. Определите какая соль натрия была взята и запишите в ответе ее формулу (например: K2SO4).

Otbet: NaF

11-8. Навеску соли натрия массой 1,000 г растворили в воде. Последующее добавление раствора ацетата бария привело к выпадению 1,863 г осадка. Определите какая соль калия была взята и запишите в ответе ее формулу (например: K2SO4).

Ответ: Na2CO3

11-9. Химик Саша получил метилфенилкетон из 2-фенилэтанола в четыре стадии. Для этого он использовал следующие реагенты: 1) H_2O , $HgSO_4$; 2) Br_2 ; 3) KOH _{спиртовой раствор}, нагрев; 4) H_3PO_4 конц, нагрев. Расставьте эти реагенты в том порядке, в котором их использовал Саша. В ответе запишите только номера реагентов, не разделяя их запятыми или пробелами (например, 1234).

Ответ: 4231

11-10. Химик Сережа получил фенилацетилен из метилфенилкетона в четыре стадии. Для этого он использовал следующие реагенты: 1) КОН _{спиртовой раствор}, нагрев; 2) Н₃РО_{4 конц.}, нагрев; 3) Н₂, Nі-катализатор; 4) Вг₂. Расставьте эти реагенты в том порядке, в котором их использовал Сережа. В ответе запишите только номера реагентов, не разделяя их запятыми или пробелами (например, 123).

Ответ: 3241

11-11. Образец сплава цинка с алюминием массой 10,0 г полностью растворили в избытке соляной кислоты. При этом выделилось 8,394 л газа (приведено к н.у.). Определите массовую долю цинка в сплаве. В ответе запишите массовую долю в виде целого числа процентов (например, 11)

Ответ: 45

11-12. Образец сплава цинка с алюминием массой 10,0 г полностью растворили в избытке соляной кислоты. При этом выделилось 6,145 л газа (приведено к н.у.). Определите массовую долю цинка в сплаве. В ответе запишите массовую долю в виде целого числа процентов (например, 11)

Ответ: 70

11-13. Определите сколько различных монохлорпроизводных образовалось при неселективном хлорировании метилциклопентана на свету. В ответе запишите только число изомерных хлорметилциклопентанов (энантиомеры не учитывать).

Ответ: 6

11-14. Определите сколько различных монохлорпроизводных образовалось при неселективном хлорировании метилциклогексана на свету. В ответе запишите только число изомерных хлорметилциклогексанов (энантиомеры не учитывать).

Ответ: 8

11-15. Приблизительно оцените сколько тепла выделяется при сгорании циклогексана, если известно, что:

 $C + O_2 = CO_2 + 394$ кДж/моль

 $2H_2 + O_2 = 2H_2O + 570 \text{ кДж/моль}$

 $C + 2H_2 = CH_4 + 75$ кДж/моль

 $2C + 3H_2 = C_2H_6 + 84$ кДж/моль

Варианты ответа: 1) около 1000 кДж; 2) около 2000 кДж; 3) около 3000 кДж; 4) около 4000 кДж; 5) около 5000 кДж. В ответе напишите только цифру (например, 1).

Ответ: 4

11-16. Приблизительно оцените сколько тепла выделяется при сгорании циклопентана, если известно, что:

 $C + O_2 = CO_2 + 394$ кДж/моль

 $2H_2 + O_2 = 2H_2O + 570 \text{ кДж/моль}$

 $C + 2H_2 = CH_4 + 75 кДж/моль$

 $2C + 3H_2 = C_2H_6 + 84 кДж/моль$

Варианты ответа: 1) около 1000 кДж; 2) около 2000 кДж; 3) около 3000 кДж; 4) около 4000 кДж; 5) около 5000 кДж. В ответе напишите только цифру (например, 1).

Ответ: 3