Практический тур Московской олимпиады школьников по химии включает следующие виды работ и оценивание:

- Реферат по заданной теме и собеседование по реферату 5 баллов;
- Решение экспериментальной задачи и собеседование по технике эксперимента и решению задачи 10 баллов.

Суммарно практический тур оценивается в 15 баллов.

Энергия молекул и ее составляющие.

Темы рефератов для подготовки к экспериментальному туру

11 класс

11 класс							
Тема реферата							
Электрофильное замещение в ароматических соединениях							
Равновесие жидкость-пар							
Электролитическая диссоциация							
Кислотно-основные индикаторы							
Скорость химической реакции							
Адсорбция из растворов на межфазных поверхностях раздела фаз							
Синтез и свойства аминофенолов и их О- и N-производных .							
Азотсодержащие производные альдегидов и кетонов							
Синтез и свойства алифатических дикарбоновых кислот и их							
ангидридов							
Двойной электрический слой (ДЭС) и электрокинетические явления							
в дисперсных системах							
Тепловые эффекты химических реакций.							
Мицеллообразование в растворах поверхностно-активных веществ							
Синтез и свойства дикарбоновых кислот и их функциональных							
производных.							
Смачивание и растекание. Возможность управления смачиванием							
Эмульсии: получение, стабилизация и применение							
Синтез и свойства аминофенолов и их О- и N-производных.							
Тепловые эффекты химических реакций.							
Синтез и свойства алифатических дикарбоновых кислот и их							
ангидридов							
<u>ν</u>							

Экспериментальные задачи

Изучение равновесия в растворе слабого электролита

Цель работы: 1) ознакомление с одним из методов изучения химического равновесия на примере реакции диссоциации уксусной кислоты, 2) овладение способами расчета константы и степени диссоциации по экспериментальным данным.

Приборы и оборудование. pH-метр, мерные колбы вместимостью 50 и 100 мл, бюретки, капельная пипетка, промывалка.

Реактивы: 0,1М раствор уксусной кислоты, дистиллированная вода.

Необходимо измерить значения рН в пяти растворах уксусной кислоты с различной концентрацией. Исходными растворами является 0,1М раствор уксусной кислоты. В четырех мерных колбах вместимостью 50 мл приготовьте растворы уксусной кислоты с концентрациями 0,02, 0,01, 0,002 и 0,001 моль/л. Рассчитайте объем 0,1 М раствора уксусной кислоты, необходимый для приготовления растворов с заданными концентрациями.

Прилейте с помощью бюретки рассчитанные объемы 0,1М раствора уксусной кислоты, доведите объемы растворов до метки дистиллированной водой, закройте мерные колбы пробками и тщательно перемешайте. Перелейте растворы с концентрациями 0,1М, 0,02М, 0,01М, 0,002М и 0,001М в сухие стеклянные стаканчики и приступайте к измерению рН с помощью рН-метра, начиная с более разбавленного раствора.

Для этого погрузите электрод в контрольный раствор и нажмите на клавишу «Изм». Через 30 с. запишите установившееся на дисплее прибора показание рН. После этого нажмите на кнопку «Отм», достаньте электрод из раствора и промойте его дистиллированной водой из промывалки. После этого можно приступать к измерению рН в следующем растворе или опустить электрод в дистиллированную воду, если измерения завершены.

По измеренным значениям pH рассчитайте равновесные конценрации катионов водорода, степени и константы диссоциации. Результаты расчетов занесите в табл. 1.

Таблица 1. Исходные данные, результаты измерений и расчетов равновесия в растворе уксусной кислоты

							Рассчитанные значения		
№ раствора	Концентрация	раствора,	МОЛБ/Л	Hd	приготовленного	раствора	[Н [†]], моль/л	α, %	$K_{ ext{kuc}}$

Пример расчета. Допустим, что измеренное значение рН первого раствора оказалось равным 2,87, тогда

$$[H^{+}] = 10^{-pH} = 10^{-2.87} = 10^{-3} \cdot 10^{0.13} = 1,48 \cdot 10^{-3}$$
 моль/л

Расчет константы диссоциации:

$$K_{\text{KUCJI}} = \frac{[\text{H}^+]^2}{[\text{CH}_3\text{COOH}]} = \frac{(1,48 \cdot 10^{-3})^2}{10^{-1}} = 2,19 \cdot 10^{-5}$$
.

Расчет степени диссоциации:

$$\alpha = \frac{[H^+]}{[CH_3COOH]} = \frac{1,48 \cdot 10^{-3}}{10^{-1}} = 1,48 \cdot 10^{-2} \cdot 100\% = 1,48\%$$

Произведите так же расчеты концентрации ионов водорода, константы и степени диссоциации для других растворов, в которых концентрация уксусной кислоты равна 0,02M, 0,01 M, 0,002M и 0,001 M. Результаты расчетов внесите в таблицу.

Задание. 1. Сделайте выводы об изменении степени диссоциации в зависимости от концентрации раствора.

- 2. Сравните рассчитанную вами на основании экспериментальных данных величину константы диссоциации с табличным значением: $K_{\text{д}}(\text{CH}_3\text{COOH}) = 1,75 \cdot 10^{-5}$. Изменяется ли значение $K_{\text{кисл}}$ с изменением концентрации уксусной кислоты?
- 3. Запишите выражение константы равновесия диссоциации уксусной кислоты, исходя из закона действующих масс для химического равновесия.

ОЦЕНКА: максимум 10 баллов