

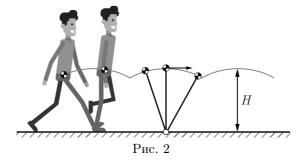
80-ая Московская олимпиада школьников по физике 2019 год


10 класс, первый тур

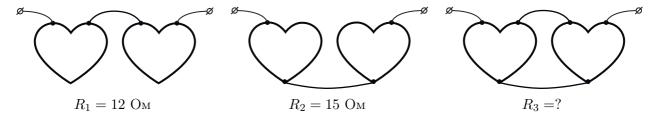
Условия задач, ответы, критерии оценивания

Механизм (8 баллов), Бычков А. И., Крюков П. А.

На рис. 1 изображена схема кривошипно-шатунного механизма паровой машины с качающимся цилиндром. Кривошип OA длиной r вращается с угловой скоростью ω вокруг точки O. В точке A кривошип шарнирно соединен со стержнем AC, продетым сквозь муфту, закрепленную на шарнире B, так что муфта может свободно вращаться вокруг точки B. OB = a, AC > a + r.

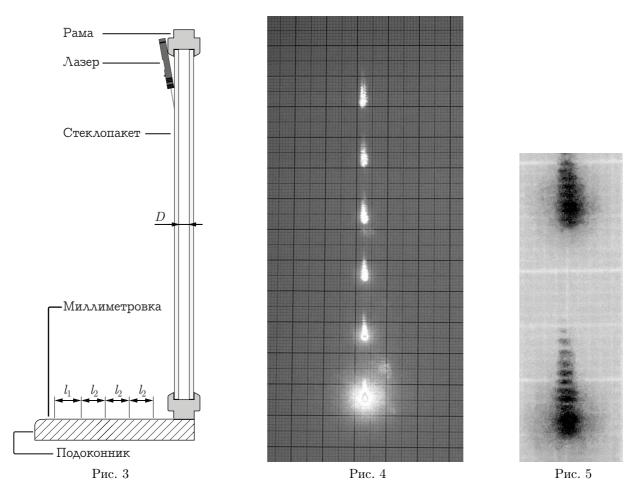

- 1) Чему равен угол α в тот момент, когда угловая скорость муфты минимальна?
- 2) Определите максимальную угловую скорость муфты.

Страница 1 из 8.


Ходьба на Земле и на Марсе (10 баллов), Крюков П. А.

В простейшей физической модели пешей ходьбы считается, что центр масс человека движется по периодической кривой, повторяющийся участок которой представляет собой дугу окружности с радиусом, равным длине ноги человека H. Определите в рамках этой модели отношение максимальных скоростей ходьбы на Земле и на Марсе, а также отношение мощностей, затрачиваемых при ходьбе с максимально возможной скоростью на этих планетах. Масса Марса составляет 0,11 массы Земли, радиус Марса равен 0,53 радиуса Земли. По поверхности Марса человек перемещается в скафандре, масса которого составляет примерно треть массы человека. Траектории центра масс человека на Земле и человека в скафандре на Марсе считайте одинаковыми. Учтите, что при ходьбе необходим постоянный контакт хотя бы одной ноги с поверхностью планеты.

К дню святого Валентина (10 баллов), Ромашка М. Ю.


Из одинаковых проволочных фигур-сердечек, показанных на рисунке ниже (каждое сердечко имеет ось симметрии) собрали три электрические цепи. Сопротивление первой цепи между выводами $R_1=12$ Ом, сопротивление второй — $R_2=15$ Ом. Найдите сопротивление R_3 третьей цепи. Сопротивлением соединительных проводов пренебречь.

Измерение стеклопакета (10 баллов), Крюков П. А.

Используя мощную лазерную указку, осуществляют эксперимент, схема которого показана на рис. 3. На стекло одинарного стеклопакета (состоит из двух параллельно расположенных стёкол толщиной 3-5 мм) направляют лазерный луч сверху вниз под малым углом (порядка 0,1 рад) к поверхности стекла. При этом на масштабно-координатной бумаге (миллиметровке), которая лежит на подоконнике, наблюдают систему ярких пятен (см. рис. 4). Известно, что расстояние между первым (самым ярким) и вторым пятнами равно $l_1=20\pm 2$ мм, а между следующими соседними $l_2=19\pm 2$ мм. Эти расстояния определяются по положению самой яркой области пятна. На рис. 5 показан сильно увеличенный фрагмент фотографии с рис 4, инвертированный (чёрное замененно на белое и наоборот) для удобства восприятия. Найдите по данным эксперимента расстояние D между внутренними поверхностями стёкол. Оцените погрешность полученного результата.

Возможно, при анализе эксперимента вам потребуется значение показателя преломления для стекла. Для разных марок стекла показатель преломления лежит в пределах от 1,4 до 1,7.

