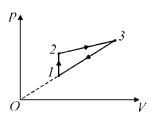
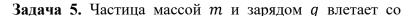
МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ 2016—2017 уч. г.

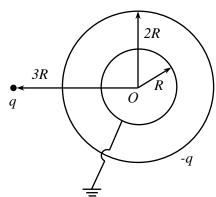
НУЛЕВОЙ ТУР, ЗАОЧНОЕ ЗАДАНИЕ. 11 КЛАСС

В прилагаемом файле приведено ноябрьское заочное задание для 11-го класса. Подготовьте несколько листов в клетку, на которых от руки напишите развёрнутые решения прилагаемых задач. Сфотографируйте страницы с Вашими решениями так, чтобы текст был чётко виден. Создайте архив фотографий с решениями и прикрепите к заданию. Развёрнутые решения задач оцениваются максимально в 30 баллов (по 6 баллов за полное правильное решение каждой задачи).

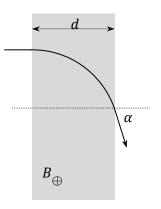

ЗАДАЧИ С РАЗВЁРНУТЫМ ОТВЕТОМ

Развёрнутое решение задачи включает в себя законы и формулы, применение которых необходимо и достаточно для её решения, а также математические преобразования, приводящие к решению в общем виде, и расчёты с численным ответом и единицами измерения.


Задача 1. На доске массой 2m лежит брусок массой m. Коэффициент трения между доской и столом μ , а между доской и грузом 4μ . При какой минимальной массе M груза, прикреплённого к вертикальному участку нити, начнётся проскальзывание между доской и бруском?


Задача 2. На прямолинейно движущееся тело в течение времени $\tau=5$ с действовала постоянная сила, направленная вдоль вектора скорости. Найдите расстояние, пройденное телом за время действия силы, если за это время модуль импульса тела возрос на $\Delta p=4$ суль, а его кинетическая энергия увеличилась на $\Delta w=10~\text{Джc}$.

Задача 3. В тепловом двигателе, рабочим телом которого является p_1 один моль идеального одноатомного газа, совершается циклический процесс, изображённый на рисунке, где 1- 2 — изохорный процесс. Работа газа за один цикл составляет A = 60 Дж, температуры газа в состояниях 1 и 3 равны T_1 = 320 К и T_3 = 350 К соответственно. Найдите коэффициент полезного действия цикла.



Задача 4. Система состоит из двух концентрических проводящих сфер — внутренней радиусом R, внешней радиусом 2R — и точечного заряда q (q > 0), который находится на расстоянии 3R от точки O. Внешняя сфера имеет заряд — q. Чему равен заряд, индуцируемый на поверхности внутренней сферы, если её заземлить (см. рис.)?

скоростью v в область однородного магнитного поля шириной d. В результате после прохождения магнитного поля направление скорости изменяется на угол α . Траектория частицы лежит в одной плоскости (см. рис.). Определите индукцию магнитного поля B.

ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

Задание 1 (по условию задачи 1).

Чему равно натяжение нити, если m=1 кг, $\mu=0.4$, g=10 м/с²? Ответ представьте в Н и округлите до целого. Правильный ответ оценивается в 2 балла.

Задание 2 (по условию задачи 2).

Чему равна средняя скорость тела за время действия силы? Ответ представьте в м/с и округлите до первого знака после запятой. Правильный ответ оценивается в 2 балла.

Задание 3 (по условию задачи 3).

Чему равна молярная теплоёмкость в процессе 3-1? Ответ выразите в единицах R, где R — универсальная газовая постоянная, и округлите до целого. Правильный ответ оценивается в 4 балла.

Задание 4 (по условию задачи 4).

Какой заряд индуцируется на внутренней поверхности сферы радиусом R? Ответ выразите в единицах q. Правильный ответ оценивается в 1 балл.

Задание 5 (по условию задачи 4).

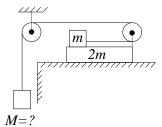
Какой заряд индуцируется на внутренней поверхности сферы радиусом 2R? Ответ выразите в единицах q. Как распределится заряд по этой поверхности?

- а) равномерно;
- б) неравномерно.

Правильный ответ оценивается в 2 балла.

Задание 6 (по условию задачи 4).

Какой заряд индуцируется на внешней поверхности сферы радиусом 2R? Ответ выразите в единицах q. Правильный ответ оценивается в 1 балл.


Задание 7 (по условию задачи 5).

Чему равно время пролёта частицы через магнитное поле? Скорость частицы v = 50 м/с, угол $\alpha = 30^\circ$, ширина слоя магнитного поля d = 50 см. Ответ выразите в секундах, округлите до второго знака после запятой. Правильный ответ оценивается в 3 балла.

Московская олимпиада по физике, 2016/2017, нулевой тур, заочное задание (ноябрь), 11-й класс

Заочное задание (ноябрь) состоит из пяти задач. За решение каждой задачи участник получает до 4 баллов по результатам автоматической проверки ответов и до 6 баллов на основании проверки развёрнутого ответа. Всего участник может получить до 50 баллов.

Задача 1. На доске массой 2m лежит брусок массой m. Коэффициент трения между доской и столом μ , а между доской и грузом 4μ . При какой минимальной массе M груза, прикреплённого к вертикальному участку нити, начнётся проскальзывание между доской и бруском?

Возможное решение. Максимально возможная сила трения,

действующая на доску со стороны стола, равна $3\mu mg$. Максимально возможная сила трения, действующая на брусок со стороны доски, равна $4\mu mg$. Значит, при увеличении массы M сначала начнёт проскальзывать доска, а на брусок ещё какое-то время будет действовать сила трения покоя. В случае минимальной массы M груза возникает пограничная ситуация: на брусок действует максимально возможная сила трения, но ускорения доски и бруска ещё одинаковы. Сила для этого случая трения, действующая на брусок, направлена в ту же сторону, куда и ускорение системы «брусок – доска». Запишем второй закон Ньютона для бруска, доски и груза соответственно:

$$4\mu mg - T = ma,$$

$$2T - 4\mu mg - 3\mu mg = 2ma,$$

$$Mg - T = Ma,$$

где T — сила реакции со стороны нити.

Отсюда получаем:

$$M = \frac{15\mu}{4-\mu}m.$$

Для задания с кратким ответом: сила реакции со стороны нити равна

$$T = \frac{15}{4} \mu mg.$$

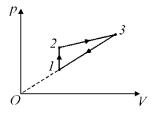
Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. За решение, доведённое до правильного ответа, но с недочётами в доказательстве участник получает *4 балла*. Если участник не довёл решение до правильного ответа, он может получить до *2 умешительных баллов* по следующим основаниям: правильное использование законов Ньютона.

Задача 2. На прямолинейно движущееся тело в течение времени $\tau = 5$ с действовала постоянная сила, направленная вдоль вектора скорости. Найдите расстояние, пройденное телом за время действия силы, если за это время модуль импульса тела возрос на $\Delta p = 4$ $\frac{\text{кг} \cdot \text{м}}{c}$, а его кинетическая энергия увеличилась на $\Delta w = 10 \, \text{Дж}$.

Возможное решение. Из условия

$$\begin{cases} m(v_2 - v_1) = \Delta p, \\ \frac{1}{2}m(v_2^2 - v_1^2) = \Delta w. \end{cases}$$

Деля второе равенство на первое, получим значение средней скорости за время действия силы:


$$v_{\rm cp} = \frac{v_1 + v_2}{2} = \frac{\Delta w}{\Delta p} = 2.5 \text{ m/c}.$$

Окончательно получаем

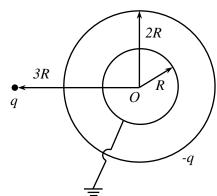
$$s = v_{\rm cp} \tau = \frac{\Delta w}{\Delta p} \tau = 12.5 \text{ M}.$$

Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. За выражение для изменения импульса тела — 1 балл. За выражение для изменения кинетической энергии тела — 1 балл. Получено выражение для средней скорости тела — 3 балла. Найдено расстояние, пройденное телом за время действия силы — 1 балл.

Задача 3. В тепловом двигателе, рабочим телом которого является один моль идеального одноатомного газа, совершается циклический процесс, изображённый на рисунке, где 1- 2 — изохорный процесс. Работа газа за один цикл составляет A = 60 Дж, температуры газа в состояниях 1 и 3 равны T_1 = 320 К и T_3 = 350 К соответственно. Найдите коэффициент полезного действия цикла.

Возможное решение. Газ отдаёт холодильнику теплоту в процессе 3-1. Этот процесс является политропным ($pV^{-1} = \text{const}$, где показатель политропы равен n = -1) с молярной теплоёмкостью $c = \frac{c_V + c_p}{2} = 2R$, значит,

$$|Q_{31}| = \nu c (T_3 - T_1).$$


КПД цикла равен:

$$\eta = \frac{A}{A + |Q_{31}|} = \frac{A}{A + \nu \frac{c_V + c_P}{2} (T_3 - T_1)} = 10,7\%.$$

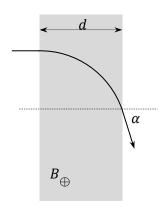
Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. Указано, в каких процессах газ принимает тепло, а в каких отдаёт -1 балл. Найдено отведённое количество теплоты $|Q_{31}|$ за цикл -3 балла. Найден КПД цикла (123)-2 балла. Если участник не довёл решение до правильного ответа, он может получить до 2 утешительных баллов по следующим основаниям: правильное использование формулы для КПД; правильное использование первого начала

термодинамики и формул для работы, количества теплоты и внутренней энергии газа.

Задача 4. Система состоит из двух концентрических проводящих сфер — внутренней радиусом R, внешней радиусом 2R — и точечного заряда q (q > 0), который находится на расстоянии 3R от точки O. Внешняя сфера имеет заряд -q. Чему равен заряд, индуцируемый на

поверхности внутренней сферы, если её заземлить (см. рис.)?

Возможное решение. Внутри сферы радиусом R нет зарядов, значит, в этой области поле отсутствует. Тогда потенциал внутренней сферы равен потенциалу точки O. После заземления потенциал сферы (значит, и точки O) становится равным нулю. Из принципа суперпозиции находим


$$\varphi_0 = k \frac{Q}{R} - k \frac{q}{2R} + k \frac{q}{3R} = 0 \quad \Rightarrow \quad Q = \frac{1}{6} q.$$

На внутренней поверхности сферы радиусом R нет зарядов. Толща большой сферы экранирует поля, созданные точечным зарядом q и зарядами с внешней поверхности сферы радиусом 2R. Поэтому на внешней поверхности малой сферы и внутренней поверхности большой сферы индуцируются заряды Q и -Q соответственно, распределившись равномерно по этим поверхностям. На внешней поверхности большой сферы неравномерно распределится заряд Q-q.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. За правильное обоснование того, что внутри сферы радиусом R поле отсутствует – 2 балла. Указание на то, что потенциал внутренней сферы равен потенциалу точки O-1 балл. Правильно воспользовались принципом суперпозиции – 1 балл. Найден заряд Q-2 балла.

Задача 5. Частица массой m и зарядом q влетает со скоростью v в область однородного магнитного поля шириной d. В результате после прохождения магнитного поля направление скорости изменяется на угол α . Траектория частицы лежит в одной плоскости (см. рис.). Определите индукцию магнитного поля B.

Возможное решение. Так как начальная скорость частицы $\boldsymbol{v} \perp \boldsymbol{B}$, то движение её будет происходить в перпендикулярной полю плоскости. Действительно, сила Лоренца всегда перпендикулярна полю, а потому продольная её составляющая равна нулю. Не может

появиться, следовательно, и продольная составляющая скорости. Далее, так как в магнитном поле всегда v= const и $v\perp B$, то $F_{\pi}=qvB=$ const.

Таким образом, частица будет двигаться с постоянной по модулю скоростью под действием постоянной по модулю силы, перпендикулярной скорости. Это – движение по дуге окружности. Записывая второй закон Ньютона для этого движения, получим

$$m\frac{v^2}{R} = qvB \implies B = \frac{mv}{qR} = \frac{mv}{qd}\sin\alpha.$$

Для задания с кратким ответом: время полного оборота частицы с массой m и зарядом q в магнитном поле B определяется формулой $T=\frac{2\pi}{\omega}=\frac{2\pi m}{qB}$, а время движения по дуге с углом α определяется формулой

$$\tau = \frac{\alpha}{2\pi}T = \frac{\alpha m}{aB} = \frac{\alpha d}{v\sin\alpha}.$$

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. За правильное обоснование того, что частица движется по дуге

окружности — 2 балла. Правильно записанный второй закон Ньютона — 3 балла. Найдена индукция магнитного поля — 1 балл.

Автоматическая проверка ответов.

Задание 1. 15

Задание 2. 2,5

Задание 3. 2

Задание 4. 0

Задание 5. –1/6; а

Задание 6. –5/6

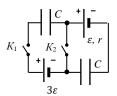
Задание 7. 0,01

МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

ПО ФИЗИКЕ 2016-2017 уч. г.

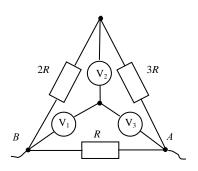
НУЛЕВОЙ ТУР, ЗАОЧНОЕ ЗАДАНИЕ. 11 КЛАСС

В прилагаемом файле приведено декабрьское заочное задание для 11-го класса. Подготовьте несколько листов в клетку, на которых от руки напишите развёрнутые решения прилагаемых задач. Сфотографируйте страницы с Вашими решениями так, чтобы текст был чётко виден. Создайте архив фотографий с решениями и прикрепите к заданию. Развёрнутые решения задач оцениваются максимально в 30 баллов (по 6 баллов за полное правильное решение каждой задачи).

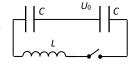

ЗАДАЧИ С РАЗВЁРНУТЫМ ОТВЕТОМ

Развёрнутое решение задачи включает в себя законы и формулы, применение которых необходимо и достаточно для её решения, а также математические преобразования, приводящие к решению в общем виде и расчёты с численным ответом и единицами измерения.

Задача 1. Бруску массой m=1 кг, лежащему на горизонтальной поверхности и соединенному со стенкой пружиной жесткостью k=100 Н/м, сообщают скорость $v_0=1$ м/с в направлении стены. Изначально пружина была растянута на l=10 см. Коэффициент трения между поверхностью и бруском $\mu=0,2$. Определите максимальную скорость бруска u в процессе последующего движения. g=10 м/с².


Задача 2. В цилиндрическом теплоизолированном сосуде объемом V = 33,6 дм³ под поршнем находится v = 2,0 моль гелия при температуре $T_1 = 300$ К. В сосуд добавляют еще m = 4,0 г гелия при температуре $T_2 = 500$ К, и после выравнивания температур содержимое адиабатически сжимают, совершая над ним работу A = 2,0 кДж. Какая температура T установится в сосуде в конечном состоянии? R = 8,31 Дж/(моль·К).

Задача 3. В электрической цепи, схема которой приведена на рисунке, K_1 изначально ключи разомкнуты, а конденсаторы не заряжены. C=1 мк Φ , $\varepsilon=2$ В.



- Определите напряжения на конденсаторах через большое время после замыкания ключа K_1 .
- Определите количество теплоты Q, которое выделится на внутреннем сопротивлении источника ε , если через большое время после замыкания ключа K_1 замкнуть ключ K_2 . Внутренним сопротивлением источника 3ε можно пренебречь.

Задача 4. Определите показания вольтметров V_1 и V_2 , если вольтметр V_3 показывает $U_3 = 16$ В. Все вольтметры одинаковые. Сопротивление вольтметров гораздо больше сопротивления резисторов.

Задача 5. В электрической цепи, схема которой приведена на рисунке, вначале один из конденсаторов заряжен до напряжения $U_0 = 10 \; \mathrm{B}$, а второй не заряжен. Ключ замыкают. Определите модуль скорости

изменения силы тока $\left| \frac{di}{dt} \right|$ в цепи в момент, когда энергия, запасенная в

катушке, равна половине энергии запасенной в конденсаторах. Индуктивность катушки $L=57.7~\mathrm{m\Gamma h}$.

ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

Задание 1 (по условию задачи 1).

Найдите максимальное сжатие пружины. Ответ выразите в сантиметрах, округлите до десятых. Правильный ответ оценивается в 3 балла.

Задание 2 (по условию задачи 1).

Найдите ускорение бруска в начале движения. Ответ выразите в M/c^2 и округлите до целых. Правильный ответ оценивается в 1 балл.

Задание 3 (по условию задачи 2).

Найдите давление в сосуде перед началом адиабатического сжатия. Ответ выразите в кПа и округлите до целого. Правильный ответ оценивается в 4 балла.

Задание 4 (по условию задачи 3).

Определите разность потенциалов на контактах ключа K_2 перед его замыканием. Ответ выразите в Вольтах и округлите до целого. Правильный ответ оценивается в 1 балл.

Задание 5 (по условию задачи 3).

Определите величину заряда, протекшего через ключ K_2 после его замыкания. Ответ выразите в мкКл и округлите до целых. Правильный ответ оценивается в 3 балла.

Задание 6 (по условию задачи 4).

Определите какое напряжение подано на контакты AB. Ответ выразите в Вольтах и округлите до целых. Правильный ответ оценивается в 2 балла.

Задание 7 (по условию задачи 5).

Определите напряжение изначально незаряженного конденсатора в момент, когда напряжение заряженного уменьшилось на 2 В. Ответ выразите в Вольтах и округлите до целых. Правильный ответ оценивается в 1 балл.

Московская олимпиада по физике, 2016/2017, нулевой тур, заочное задание (декабрь), 11-й класс

Заочное задание состоит из пяти задач. За решение каждой задачи участник получает до 4 баллов по результатам автоматической проверки ответов и до 6 баллов на основании проверки развёрнутого ответа. Всего участник может получить до 50 баллов.

Задача 1. Бруску массой m=1 кг, лежащему на горизонтальной поверхности и соединенному со стенкой пружиной жесткостью k=100 Н/м, сообщают скорость $v_0=1$ м/с в направлении стены. Изначально пружина была растянута на l=10 см. Коэффициент трения между поверхностью и бруском $\mu=0,2$. Определите максимальную скорость бруска u в процессе последующего движения. g=10 м/с².

Возможное решение. Когда скорость бруска максимальна, его ускорение обращается в ноль. Равна нулю в этот момент и сумма сил, действующих на брусок, $\mu mg = kx$, где x – деформация растянутой пружины. С учетом численной подстановки получаем x = 2 см. По закону изменения механической энергии $\frac{m v_0^2}{2} + \frac{k l^2}{2} - \mu mg(l-x) = \frac{m u^2}{2} + \frac{k x^2}{2}$.

Отсюда
$$u = \sqrt{\upsilon_0^2 + \frac{k}{m}(l^2 - x^2) - 2\mu g(l - x)} = 1,28$$
 м/с.

Решение для первого задания с кратким ответом.

По закону изменения механической энергии $\frac{m\upsilon_0^2}{2} + \frac{kl^2}{2} - \mu mg(l+s) = \frac{ks^2}{2}$. Отсюда, с учетом численной подстановки, получаем квадратное уравнение $25s^2 + s - 0.4 = 0$ и s = 10.8 см.

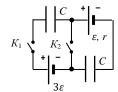
Решение для второго задания с кратким ответом.

Второй закон Ньютона для начального момента имеет вид: $ma=kl-\mu mg$, откуда $a=\frac{kl}{m}-g=8 \text{ m/c}^2.$

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. За условие максимальности скорости и верно записанный закон изменения энергии участник получает *4 балла*. Если участник не довёл решение до правильного ответа, он может получить до *2 утешительных баллов* за правильное условие максимальности скорости.

Задача 2. В цилиндрическом теплоизолированном сосуде объемом V = 33,6 дм³ под поршнем находится v = 2,0 моль гелия при температуре $T_1 = 300$ К. В сосуд добавляют еще

m = 4.0 г гелия при температуре $T_2 = 500$ K, и после выравнивания температур содержимое адиабатически сжимают, совершая над ним работу A = 2,0 кДж. Какая температура Tустановится в сосуде в конечном состоянии? $R = 8.31 \, \text{Дж/(моль·К)}$.


Возможное решение. С учетом молярной массы гелия, количество добавленного газа равно $\frac{v}{2} = 1$ моль. Так как система теплоизолирована, по первому закону термодинамики $\frac{3}{2}$ $\nu RT_1 + \frac{3}{2} \frac{\nu}{2} RT_2 + A = \frac{3}{2} \frac{3}{2} \nu RT$, откуда $T = \frac{1}{3} (2T_1 + T_2 + \frac{4A}{3\nu R}) = 420$ К.

Решение для третьего задания с кратким ответом.

В результате теплообмена в системе установится температура $T = \frac{2}{2}(T_1 - \frac{T_2}{2})$. Подставляя найденное значение в уравнение состояния, получим: $p = \frac{3vRT}{2V} = 272 \text{ к}\Pi \text{a}$.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. За верно записанный первый закон термодинамики – 3 балла. За правильно определенное количество добавленного гелия – 1 балл.

Задача 3. В электрической цепи, схема которой приведена на рисунке, изначально ключи разомкнуты, а конденсаторы не заряжены. C=1 мк Φ , $\varepsilon = 2 B$.

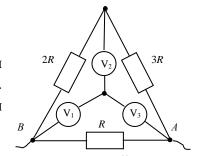
- Определите напряжения на конденсаторах через большое время после замыкания ключа K_1 .
- \bullet Определите количество теплоты Q, которое выделится на внутреннем сопротивлении источника ε , если через большое время после замыкания ключа K_1 замкнуть ключ K_2 . Внутренним сопротивлением источника 3ε можно пренебречь.

Возможное решение. В установившемся режиме после замыкания ключа K_1 по закону сохранения заряда $CU_1 = CU_2$. Из второго закона $K_1 = C + CU_2 = CU_3$ второго закона $K_2 = CU_3 = CU$ Кирхгофа $U_1 + \varepsilon + U_2 - 3\varepsilon = 0$. Откуда $U_1 = U_2 = \varepsilon = 2$ В.

После замыкания ключа K_2 конденсатор, имеющий напряжение U_1 , мгновенно перезарядится до напряжения 3ε , при этом на ключе выделится часть тепла в виде искры. После этого начнется перезарядка второго конденсатора в правом контуре. Заряд, протекший через источник с ε , равен $2C\varepsilon$. По закону сохранения энергии

$$2C\varepsilon \cdot \varepsilon + \frac{C\varepsilon^2}{2} = \frac{C\varepsilon^2}{2} + Q$$
. Отсюда $Q = 2C\varepsilon^2 = 8$ мкДж.

Решение для четвертого задания с кратким ответом.


С учетом найденного значения U_1 =2 В. Разность потенциалов на ключе K_2 перед его замыканием равна $U_{K2} = -U_1 + 3\varepsilon = 4$ В.

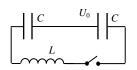
Решение для пятого задания с кратким ответом.

Изменение электрического заряда в ранее электронейтральной области (например, содержащей источник 3ε) равно заряду протекшему через ключ $q_{\rm K2} = 4C\varepsilon = 8$ мкКл.

Критерии оценок развёрнутого решения. За полностью решенную задачу участник получает 6 баллов. За найденные напряжения на конденсаторах -2 балла. За верно записанный закон сохранения энергии только для правого контура с учетом работы источника, дополнительно 2 балла.

Задача 4. Определите показания вольтметров V_1 и V_2 , если вольтметр V_3 показывает $U_3 = 16$ В. Все вольтметры одинаковые. Сопротивление вольтметров гораздо больше сопротивления резисторов.

Возможное решение. Из-за большого сопротивления вольтметров ток, текущий через них, пренебрежимо мал. Пусть через резисторы 2R и 3R идет ток I, тогда через резистор R идет ток 5I. Выразим суммарные показания вольтметров через разности потенциалов узлов, к которым они подключены: $U_1 + U_3 = U$, $U_2 + U_3 = \frac{3}{5}U$. С учетом первого закона Кирхгофа для центрального узла схемы $U_1 + U_2 = U_3$. Решая систему уравнений, получим: $U_1 = \frac{7}{15}U$


,
$$U_2 = \frac{1}{15}U$$
 , $U_3 = \frac{8}{15}U$, или $U_1 = 14$ B, $U_2 = 2$ B.

Решение для шестого задания с кратким ответом.

С учетом найденных напряжений на вольтметрах $U_{AB} = U_1 + U_3 = 30 \text{ B}.$

Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. За верное соотношение токов через резисторы 1 балл, за верно записанные связи показаний вольтметров и разностей потенциалов узлов по 1 баллу за каждое уравнение, учет первого закона Кирхгофа для центрального узла 1 балл.

Задача 5. В электрической цепи, схема которой приведена на рисунке, вначале один из конденсаторов заряжен до напряжения $U_0 = 10$ В, а второй не заряжен. Ключ замыкают. Определите модуль скорости изменения силы тока $\left| \frac{di}{dt} \right|$ в цепи в момент, когда энергия, запасенная в катушке, равна

половине энергии, запасенной в конденсаторах. Индуктивность катушки L = 57.7 мГн.

Возможное решение. По закону сохранения заряда после замыкания

ключа
$$U_0=U_1+U_2$$
, при этом $-Lrac{di}{dt}\!=\!U_1\!-\!U_2$. Закон сохранения

энергии, с учетом условия, имеет вид: $\frac{CU_0^2}{2} = \frac{3}{2} \left(\frac{CU_1^2}{2} + \frac{CU_2^2}{2} \right).$

$$U_1 + C$$
 $U_2 + C$
 $U_2 + C$
 $U_3 + C$

Решая систему, получим
$$U_1=\frac{3\pm\sqrt{3}}{6}U_0$$
 и $U_2=\frac{3\mp\sqrt{3}}{6}U_0$, откуда

$$\left| \frac{di}{dt} \right| = \frac{U_0}{\sqrt{3}L} = 100 \text{ A/c.}$$

Решение для седьмого задания с кратким ответом.

Если напряжение одного конденсатора уменьшилось на $\Delta U=2$ В, то протекший заряд $\Delta q=C\Delta U$. По закону сохранения электрического заряда на такую же величину должен увеличиться заряд второго конденсатора, следовательно, так как емкости равны, напряжение на нем изменится тоже на $\Delta U=2$ В.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. Записан закон сохранения заряда -1 балл. Записана разность потенциалов на катушке через напряжения на конденсаторах -1 балл. Записан закон сохранения энергии -1 балл.

Автоматическая проверка ответов.

Задание 1. 10,8

Задание 2.8

Задание 3. 272

Задание 4. 4

Задание 5.8

Задание 6. 30

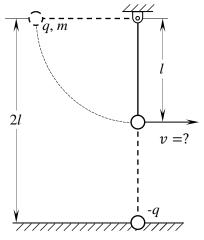
Задание **7.** 2

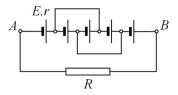
МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ 2016–2017 уч. г. НУЛЕВОЙ ТУР, ЗАОЧНОЕ ЗАДАНИЕ. 11 КЛАСС

В прилагаемом файле приведено январское заочное задание для 11класса. Подготовьте несколько листов в клетку, на которых от руки напишите развёрнутые решения прилагаемых задач. Сфотографируйте страницы с Вашими решениями так, чтобы текст был чётко виден. Создайте архив фотографий с решениями и прикрепите к заданию. Развёрнутые решения задач оцениваются максимально в 30 баллов (по 6 баллов за полное правильное решение каждой задачи).

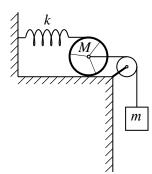
ЗАДАЧИ С РАЗВЁРНУТЫМ ОТВЕТОМ

Развёрнутое решение задачи включает в себя законы и формулы, применение которых необходимо и достаточно для её решения, а также математические преобразования, приводящие к решению в общем виде, и расчёты с численным ответом и единицами измерения.


Задача 1. Вертикальный стержень длиной l стоит на гладкой горизонтальной поверхности. В какой-то момент он теряет устойчивость и падает. По какой траектории движется мгновенный центр вращения стержня во время его падения?


Задача 2. В горизонтальной трубе сечением S, закрытой с торцов, находится одноатомный газ, разделённый на 2 части теплонепроницаемым поршнем, который может

свободно перемещаться в трубе. Начальное давление газа равно p. На сколько сместится поршень, если через левый торец к газу подвести количество теплоты Q, а через правый — такое же количество теплоты отвести? Боковые стенки тепло не пропускают. Процесс считать квазистатическим.


Задача 3. Математический маятник массой m и длиной l, несущий заряд q, отклонили в горизонтальное положение и отпустили без начальной скорости. Найти скорость v шарика в момент прохождения положения равновесия. Нижний заряд -q, расположенный на одной вертикали с точкой подвеса, закреплён.

Задача 4. Найти ток I через резистор с сопротивлением R=5 Ом в схеме, изображённой на рисунке. Все источники одинаковые и имеют ЭДС E=15 В и внутреннее сопротивление r=2 Ом. Сопротивлением соединительных проводов пренебречь.

Задача 5. Найти собственную частоту малых колебаний груза m в системе, изображённой на рисунке. Обруч M катается без проскальзывания, массой спиц по сравнению с массой обруча пренебречь.

ЗАДАНИЯ С КРАТКИМ ОТВЕТОМ

Задание 1 (по условию задачи 1).

Какое расстояние пройдёт нижняя точка стержня к моменту его падения, если длина стержня равна 30 см? Ответ представьте в см и округлите до целого. Правильный ответ оценивается в 2 балла.

Задание 2 (по условию задачи 2).

Чему равно изменение внутренней энергии всей системы? Ответ представьте в Дж и округлите до целого. Правильный ответ оценивается в 2 балла.

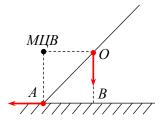
Задание 3 (по условию задачи 3).

Чему равно натяжение нити в момент прохождения положения равновесия, если m=1 г, l=10 см, $q=10^{-7}$ Кл, g=10 м/с², $k=9\cdot10^9$ Н·м²/Кл²? Ответ выразите в мН и округлите до целого. Правильный ответ оценивается в 4 балла.

Задание 4 (по условию задачи 4).

Чему равна разность потенциалов $\varphi_A - \varphi_B$? Ответ выразите в Вольтах и округлите до первого знака после запятой. Правильный ответ оценивается в 3 балла.

Задание 5 (по условию задачи 5).


Чему равна амплитуда колебаний груза массой m, если сообщить ему скорость 2 см/с в состоянии равновесия? m=1 кг, M=2 кг, k=1,25 Н/м. Ответ выразите в см и округлите до целого. Правильный ответ оценивается в 4 балла.

Московская олимпиада по физике, 2016/2017, нулевой тур, заочное задание (январь), 11 класс

Заочное задание (январь) состоит из пяти задач. За решение каждой задачи участник получает до *4 баллов* по результатам автоматической проверки ответов и до *6 баллов* на основании проверки развёрнутого ответа. Всего участник может получить до *45 баллов*.

Задача 1. Вертикальный стержень длиной l стоит на гладкой горизонтальной поверхности. В какой-то момент он теряет устойчивость и падает. По какой траектории будет двигаться мгновенный центр вращения стержня во время его падения?

Возможное решение. Вдоль поверхности на стержень не действует внешних сил, следовательно, центр масс системы движется вдоль вертикальной линии. Нижняя точка A стержня движется горизонтально без отрыва от поверхности. Положение мгновенного центра вращения (МЦВ) в произвольный момент указано на рисунке. Расстояние от точки B до MЦВ в любой

момент времени равно $\frac{l}{2}$. Следовательно, *МЦВ* движется вдоль четверти окружности радиусом $\frac{l}{2}$.

Ответ на задание с кратким ответом. Нижняя точка стержня пройдёт расстояние:

$$\frac{l}{2} = 15$$
 cm.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает 6 баллов. Указано, как движется центр масс системы -2 балла. Указано, как движется нижняя точка стержня -1 балл. Указано положение MUB-2 балла. Траектория движения MUB-1 балл.

Задача 2. В горизонтальной трубе сечением S, закрытой с торцов, находится одноатомный газ, разделённый на 2 части теплонепроницаемым поршнем, который может свободно перемещаться в трубе. Начальное давление газа равно p. На сколько сместится поршень, если через левый торец к газу подвести количество теплоты Q, а через правый — такое же количество теплоты отвести? Боковые стенки теплоту не пропускают. Процесс считать квазистатическим.

Возможное решение. Из основного уравнения МКТ давление есть $p = \frac{2}{3}n\overline{w} = \frac{2}{3}u$, где n — концентрация газа, \overline{w} — средняя кинетическая энергия одной частицы, u — плотность внутренней энергии газа (энергия единицы объёма). Заметим, что внутренняя энергия всего газа в ходе процесса не меняется, следовательно, процесс изобарический (так как u = const). Количество теплоты, подведённое газу, который расположен в левой части цилиндра, равно:

$$Q = \frac{c_p}{R} pS \Delta x \implies \Delta x = \frac{2}{5} \frac{Q}{pS},$$

где Δx – искомое смещение поршня.

Ответ на задание с кратким ответом. $\Delta U = 0$.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. Выражение, связывающее давление и плотность внутренней энергии, — $2 \, \text{балла}$. Внутренняя энергия всего газа не меняется — $2 \, \text{балла}$. Указано, что процесс изобарический, — $1 \, \text{балл}$. Найдено $\Delta x - 1 \, \text{балл}$.

Задача 3. Математический маятник массой m и длиной l, несущий заряд q, отклонили в горизонтальное положение и отпустили без начальной скорости. Найти скорость v шарика в момент прохождения положения равновесия. Нижний заряд -q, расположенный на одной вертикали с точкой подвеса, закреплён.

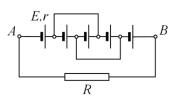
Возможное решение. Запишем закон сохранения энергии для грузика массой m:

$$mgl - k\frac{q^2}{\sqrt{5}l} = \frac{mv^2}{2} - k\frac{q^2}{l},$$

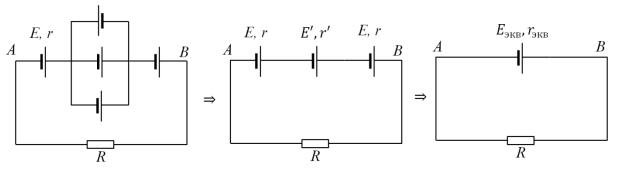
отсюда получаем:

$$v = \sqrt{2\left(gl + k\frac{q^2}{lm}\left[1 - \frac{1}{\sqrt{5}}\right]\right)}.$$

2l


Ответ на задание с кратким ответом. Из второго закона Ньютона получаем:

$$T = m \frac{v^2}{l} + mg + k \frac{q^2}{l^2} = 3mg + 2k \frac{q^2}{l^2} \left(\frac{3}{2} - \frac{1}{\sqrt{5}}\right) \cong 49 \text{ MH}.$$


Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. Начальная энергия – *2 балла*. Конечная энергия – *2 балла*. Применён закон сохранения энергии – *1 балл*. Найдена скорость – *1 балл*.

Задача 4. Найти ток *I* через резистор с сопротивлением R=5 Ом в схеме, изображённой на рисунке. Все источники одинаковые и имеют ЭДС E=15 В и внутреннее сопротивление r=2 Ом. Сопротивлением соединительных проводов пренебречь.

Возможное решение. Преобразуем исходную схему (см. рисунок, первая схема).

v = ?

Три параллельных источника заменим на эквивалентный источник с параметрами (см. рисунок, вторая схема):

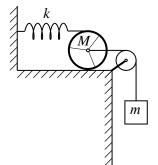
$$rac{1}{r'} = rac{1}{r} + rac{1}{r} + rac{1}{r} = rac{3}{r} \implies r' = rac{r}{3},$$
 $E' = r' \sum I_{ ext{токов короткого замыкания}} = r' \left(rac{E}{r} + rac{E}{r} - rac{E}{r}
ight) = rac{E}{3}.$

Три последовательных источника заменим на эквивалентный источник с параметрами (см. рисунок, третья схема):

$$r_{\text{ЭКВ.}} = r + r + \frac{r}{3} = \frac{7}{3}r,$$

$$E_{\text{экв.}} = E + E + \frac{E}{3} = \frac{7}{3}E.$$

Следовательно,


$$I = \frac{E_{3KB.}}{r_{3KB} + R} = \frac{7E}{7r + 3R} \cong 3,6 \text{ A}.$$

Ответ на задание с кратким ответом. По закону Ома для участка цепи получаем:

$$\varphi_A - \varphi_B = -IR = -18,1 \text{ B}.$$

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. Преобразована искомая схема – *1 балл*. Найдено $r_{\text{экв}}$. – *2 балла*. Найдена $E_{\text{экв}}$. – *2 балла*. Найден ток I-1 *балл*.

Задача 5. Найти собственную частоту малых колебаний груза m в системе, изображённой на рисунке. Обруч M катается без проскальзывания, массой спиц по сравнению с массой обруча пренебречь.

Возможное решение. Пусть груз массой m отклонился от положения равновесия на x вниз. Тогда деформация пружины равна 2x, так как обруч движется без проскальзывания. Полная энергия системы равна:

$$E = -mgx + \frac{m\dot{x}^2}{2} + M\dot{x}^2 + 4\frac{kx^2}{2} = \text{const.}$$

Продифференцировав это выражение по времени, получаем:

$$-mg\dot{x} + m\dot{x}\ddot{x} + 2M\dot{x}\ddot{x} + 4kx\dot{x} = 0 \implies \ddot{x} + \frac{4k}{m+2M}\left(x - \frac{mg}{4k}\right) = 0.$$

Окончательно получаем:

$$\omega_0^2 = \frac{4k}{m+2M}.$$

Ответ на задание с кратким ответом. Амплитуда равна:

$$A = \sqrt{x_0^2 + \frac{(\dot{x}_0)^2}{\omega_0^2}} = \sqrt{\frac{(\dot{x}_0)^2}{\omega_0^2}} = 2 \text{ cm},$$

где x_0 — начальное отклонение от положения равновесия, \dot{x}_0 — начальная скорость.

Критерии оценок развёрнутого решения. За полное решение задачи участник получает *6 баллов*. Кинематическая связь смещений тел системы – *1 балл*. Полная энергия

системы — 1 балл. Уравнение гармонических колебаний — 3 балла. Собственная частота колебаний — 1 балл.

Автоматическая проверка ответов.

Задание 1. 15

Задание 2. 0

Задание 3. 49

Задание 4. –18,1

Задание 5. 2