LXXIV Московская олимпиада школьников по химии

Заключительный этап

Экспериментальный тур

8 класс (МГУ имени М. В. Ломоносова, кафедра общей химии)

Амфотерные гидроксиды

Задание

- 1. В выданных Вам четырех пробирках находятся: CrCl₃, MgCl₂, NaCl и NaOH. Не используя другие реактивы, определите содержимое каждой пробирки.
- 2. Получите амфотерный гидроксид, используя выданные Вам соли. Докажите амфотерность гидроксида. Необходимые реагенты запросите у преподавателя.
- 3. Напишите уравнения реакций, описание эксперимента, наблюдения.

				Всего
Реферат	Задание		Критерии оценки	15
				баллов
1. Амфотерные	1. Различить 4 пробирки, в	CrCl ₃ и NaOH	1. Реферат	2
гидроксиды. Их	которых находятся: $CrCl_3$,	различаются	2. Беседа – понимание сути реакций, написание их для	3
свойства.	MgCl ₂ , NaCl и NaOH	порядком	других гидроксидов (не примеры реферата, либо подробное	
	2. Доказать амфотерность	сливания	обсуждение примеров реферата).	
	гидроксида.		3. Предложение плана различения растворов	2
			4. Предложение реакций для доказательства амфотерности.	2
			5. Написание уравнения всех предполагаемых реакций.	2
			6. Запись наблюдений и описания эксперимента.	1
			7. Соответствие полученных результатов заявленной	2
			нумерации веществ.	
			8. Полнота доказательства амфотерности	1

LXXIV Московская олимпиада школьников по химии Заключительный этап Экспериментальный тур 8 класс (РГАУ-МСХА имени К. А. Тимирязева)

Определение сухих солей

Цель работы: по растворимости и химическим свойствам определить индивидуальные кристаллические соли

Реактивы: кристаллические соли: карбонат кальция, иодид калия, сульфат магния, сульфат алюминия; растворы реактивов: соляной (хлороводородной) кислоты, гидроксида натрия, хлорида бария; хлорная вода (раствор хлора в воде).

Задания:

1) Изучите растворимость солей в воде и их реакции с имеющимися реактивами. Результаты наблюдений занесите в пустые клетки таблицы, которую Вы начертите в Вашей работе по этому образцу:

Номер бюкса	1	2	3	4
Дистиллированная вода	Вещество	Вещество не	растворилось	растворилось
	растворилось	растворилось		
Соляная кислота	Без изменений	Выделение	Без изменений	Без изменений
		газа		
Гидроксид натрия	Выпадение	Не	Выпадение	Без изменений
	осадка,	растворяется	осадка,	
	который		который не	
	растворяется		растворяется в	
	в избытке		избытке	
	щелочи		щелочи	
Хлорная вода	Без изменений	Не	Без изменений	Выделение
		растворяется		бурого
				вещества
Хлорид бария	Белый осадок	Нет реакции	Белый осадок	Без изменений

Рекомендация: для определения растворимости в пробирку налейте дистиллированной воды до половины ее объема, добавьте туда немного соли и перемешайте стеклянной палочкой. Использование большого количества соли может привести к ошибочным выводам.

2) По результатам наблюдений сделайте выводы. Определите, какая из кристаллических солей находится в каждом из бюксов. Результаты оформите в своей работе в виде таблицы:

Номер бюкса	1	2	3	4
Формула соли	Al ₂ (SO ₄) ₃	CaCO ₃	MgSO ₄	KI

3) Напишите уравнения всех возможных реакций между выданными сухими солями или их растворами и имеющимися реактивами.

$$Al_2(SO_4)_3 + 3BaCl_2 = 2AlCl_3 + 3BaSO_4 \downarrow$$

 $2Al^{3+} + 3SO_4^{2-} + 3Ba^{2+} + 6Cl^* = 2Al^{3+} + 6Cl^* + 3BaSO_4$
 $Ba^{2+} + SO_4^{2-} = BaSO_4$
 $Al_2(SO_4)_3 + 6NaOH = 2Al(OH)_3 \downarrow + 3Na_2SO_4$
 $2Al^{3+} + 3SO_4^{2-} + 6Na^+ + 6OH^* = 2Al(OH)_3 + 6Na^+ + 3SO_4^{2-}$
 $Al^{3+} + 3OH = Al(OH)_3$
 $Al(OH)_3 + NaOH = Na[Al(OH)_4]$
 $Al(OH)_3 + Na^+ + OH^* = Na^+ + [Al(OH)_4]^-$
 $Al(OH)_3 + OH^* = [Al(OH)_4]^-$
 $CaCO_3 + 2HCl = CaCl_2 + CO_2 \uparrow + H_2O$
 $CaCO_3 + 2H^+ + 2Cl^* = Ca^{2+} + 2Cl^* + CO_2 \uparrow + H_2O$

$$CaCO_3 + 2H^+ = Ca^{2+} + CO_2 \uparrow + H_2O$$
 $MgSO_4 + BaCl_2 = MgCl_2 + BaSO_4 \downarrow$
 $Mg^{2+} + SO_4^2 + Ba^{2+} + 2Ct = Mg^{2+} + 2Ct + BaSO_4 \downarrow$
 $SO_4^2 + Ba^{2+} = BaSO_4 \downarrow$
 $MgSO_4 + 2NaOH = Mg(OH)_2 \downarrow + Na_2SO_4$
 $Mg^{2+} + SO_4^2 + 2Na^+ + 2OH = Mg(OH)_2 \downarrow + 2Na^+ + SO_4^2 + Mg^{2+} + 2OH^- = Mg(OH)_2 \downarrow$
 $2KI + Cl_2 = 2KCl + I_2$
 B -тель $2I - 2e = I_2$
 O -тель $Cl_2 + 2e = 2Ct$

4) Получите амфотерный гидроксид и проведите реакции, доказывающие его амфотерность. Запишите соответствующие уравнения. Сделайте выводы.

$$Al_2(SO_4)_3 + 6NaOH = 2Al(OH)_3\downarrow + 3Na_2SO_4$$

 $2Al^{3+} + 3SO_4^{2-} + 6Na^+ + 6OH = 2Al(OH)_3 + 6Na^+ + 3SO_4^{2-}$
 $Al^{3+} + 3OH = Al(OH)_3$
 $Al(OH)_3 + NaOH = Na[Al(OH)_4]$
 $Al(OH)_3 + Na^+ + OH = Na^+ + [Al(OH)_4]^-$
 $Al(OH)_3 + OH = [Al(OH)_4]^-$
 $Al(OH)_3 + 3HCl = AlCl_3 + 3H_2O$
 $Al(OH)_3 + 3H^+ + 3Cl^- = Al^{3+} + 3Cl^+ + 3H_2O$
 $Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$

При добавлении раствора гидроксида натрия к сульфату алюминия выпадает осадок, который растворяется как в соляной кислоте, так и в щелочи. Это доказывает, что $Al(OH)_3$ – амфотерный гидроксид.

5) Получите основный гидроксид и проведите реакции, доказывающие его основные свойства. Запишите соответствующие уравнения. Сделайте выводы.

```
MgSO_4 + 2 NaOH = Mg(OH)_2 + Na_2SO_4

Mg^{2+} + SO_4^{2-} + 2Na^+ + 2OH = Mg(OH)_2 \downarrow + 2Na^+ + SO_4^{2-}

Mg^{2+} + 2OH = Mg(OH)_2 \downarrow

Mg(OH)_2 + 2HCl = MgCl_2 + 2H_2O

Mg(OH)_2 + 2H^+ + 2Cl = Mg^{2+} + 2Cl + 2H_2O

Mg(OH)_2 + 2H^+ = Mg^{2+} + 2H_2O

Mg(OH)_2 + NaOH \neq
```

При добавлении раствора гидроксида натрия к сульфату магния выпадает осадок, который растворяется в соляной кислоте, но не растворяется в растворе гидроксида натрия. Это доказывает, что $Mg(OH)_2$ – основный гидроксид.

Рекомендации по оформлению работы. Все реакции ионного обмена приводите в молекулярной форме с коэффициентами. Приветствуется написание уравнений в полной ионной и сокращенной ионной формах; написание окислительно-восстановительных реакций в молекулярной форме с указанием окислителя и восстановителя.

КРИТЕРИИ ОЦЕНИВАНИЯ

Реферат – оформление, понимание содержания, ответы на вопросы	5 баллов
по содержанию	
1) Правильно заполненная таблица в п.1) с наблюдениями	1 балл
2) Правильно определены вещества в бюксах и данные сведены в	3 балла
табл. Пункта 2)	
3) Написаны уравнения всех проведенных реакций в	3 балла
молекулярной	

4) Получен амфотерный гидроксид и доказана его амфотерность,	2 балла
написаны уравнения реакций	
5) Получен основный гидроксид и доказана его основность,	1 балл
написаны уравнения реакций	
Максимальная сумма баллов за практический тур	15 баллов

LXXIV Московская олимпиада школьников по химии

Заключительный этап

Экспериментальный тур

8 класс (РХТУ имени Д. И. Менделеева)

Приготовление растворов заданной концентрации.

Задание

Приготовить 100 мл раствора хлорида натрия с концентрацией _ мас.% (массовый процент указывается преподавателем для каждого учащегося) двумя способами:

- 1) растворением навески кристаллического NaCl в дистиллированной воде,
- 2) смешением 2 и 14 % растворов NaCl (растворы заранее приготовлены лаборантом). Работа состоит из расчетной и экспериментальной частей.

Критерии оценивания

- 1. Расчетная часть.
- 1) Расчет плотности раствора с заданной концентрацией методом интерполяции 1 балл;
- 2) Определение массы кристаллической соли (г) и объема воды (мл) необходимых для приготовления раствора заданной концентрации по первому способу 2 балла;
- 3) Определение объемов 2 и 14 % растворов необходимых для приготовления раствора заданной концентрации по второму способу 2 балла.
- 2. Экспериментальная часть.
- 1) Приготовление раствора по І способу 2 балла;
- 2) Приготовление раствора по II способу 2 балла;

Учащийся получает 2 балла в случае успешного приготовления раствора с первой попытки, иначе -1 балл. Плотность приготовленного раствора может отличаться от расчетной не более чем на $0.002~\mathrm{г/мл}$.

3) Определение методом интерполяции массовой доли приготовленного раствора и относительной погрешности – 1 балл.

Всего – 10 баллов.

<u>Реферат</u> (оформление, понимание темы реферата, ответы на вопросы по содержанию реферата) - 5 баллов.

Всего – 15 баллов