КРИТЕРИИ ОЦЕНИВАНИЯ

1. Правильно заполнена таблица 1 и приведены расчеты к ней -1 балл.

Таблица 1

Объемы компонентов для приготовления ацетатного буферного раствора

Раствор	Концентрации компонентов,		Объемы исходных 2М растворов,	
	моль/л		МЛ	
	c(CH ₃ COOH)	c(CH ₃ COONa)	V(CH ₃ COOH)	V(CH ₃ COONa)
№ 1	0,5	0,5	12,5	12,5
№2	0,5	0,1	12,5	2,5
№3	0,1	0,1	2,5	2,5

2. Правильно заполнена таблица 2 и сделаны выводы о влиянии концентраций компонентов и их соотношения на буферные свойства — **2 балла**.

Чем больше концентрации компонентов буфера и ближе их соотношение к 1, тем устойчивей буферный раствор к различным воздействиям.

3. Правильность вычислений буферной ёмкости по кислоте и щелочи -3 балла. Для вычисления буферной емкости используют формулу:

$$B = \frac{C_H \cdot V_{\mathfrak{I}\mathfrak{I}} - ma}{V_{\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}} \cdot \Delta pH}$$
, [МОЛЬ-ЭКВ/Л],

где C_H – концентрация сильного электролита (C_H =0,1 моль/л); Vэл-ma =1 мл; Vбу ϕ – объем буферного раствора; ΔpH – изменение pH (по модулю) при добавлении 1 мл сильного электролита по сравнению с pH исходного буфера.

4. Ответы на вопросы Задания 3 и 4 - 3 балла.

При ответе на вопросы 3 и 4 учащийся должен показать понимание механизма действия буферного раствора. Для этого необходимо понимание закономерностей протекания равновесных химических процессов в этих растворах. Кроме того, при ответе на вопросы учащийся должен опираться на те знания, которые он почерпнул при написании реферата к практическому туру.

5. Аккуратность при выполнении и оформлении практической работы – 1 балл.

Выполнение задания	Баллы
Правильно заполнена таблица 1 и приведены расчеты к ней	1
Правильно заполнена таблица 2 и сделаны выводы о влиянии	2
концентраций компонентов и их соотношения на буферные свойства	
Правильность вычислений буферной ёмкости по кислоте и щелочи	3
Ответы на вопросы Задания 3 и 4	3
Аккуратность при выполнении и оформлении практической работы	1
Собеседование по реферату	5
Максимальная сумма баллов	15

Решения задач экспериментального тура

Одиннадцатый класс (автор: Левчишин С.Ю.)

Зная массу навески исследуемого вещества и объём воды и разницу температур начала кристаллизации раствора и температуры кристаллизации чистой воды несложно определить молярную массу исследуемого вещества.

Объём растворителя 100 мл. Плотность воды при температуре 25 °C составляет 0,998 кг/л. $g_1 = V_1 * \rho_1 = 0,1\pi * 0,998$ кг/л = 0,0998 кг = 99,8 г. Масса навески растворённого вещества g_2 составила 3,96 г. По результатам эксперимента был построен рис. 1.

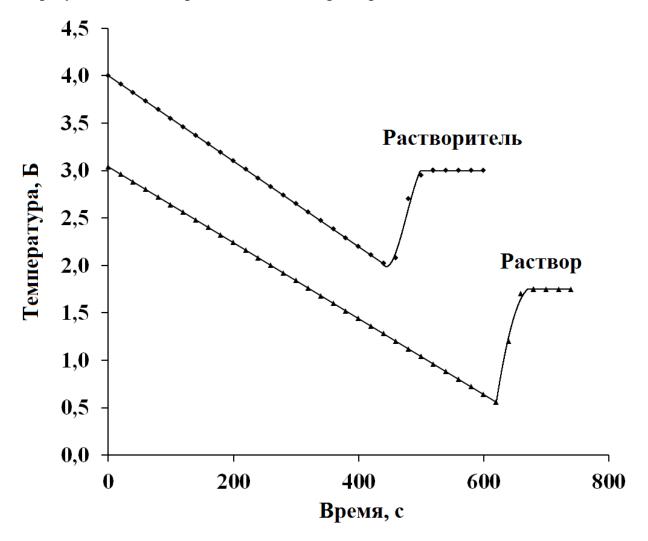


Рис. 1. Кривые охлаждения чистого растворителя и раствора.

Из рис. 1 следует, что разница между температурой кристаллизации чистого растворителя и началом кристаллизации раствора ΔТ составила 1,25 K. Молярную массу растворённого вещества можно вычислить по формуле:

$$M_2 = \frac{Kg_2 1000}{\Delta Tg_1}$$

, где M_2 – молярная масса растворённого вещества выраженная в г/моль, g_1 и g_2 – массы растворителя и растворённого вещества, K – криоскопическая постоянная.

$$M_2 = \frac{1,86K * 3,96\Gamma * 1000}{1.25K * 99.8\Gamma} = 59,04 \ \Gamma/$$
моль

Молярная масса, рассчитанная по справочным данным составит 59,07 г/моль.

Система оценивания:

Опрос по теме реферата 5 баллов

Построение графика 2 балла

Определение понижения температуры начала кристаллизации 2 балла Баллы за точность определения молярной массы:

Определение молярной массы с точностью до ±2 г/моль 2 балла

Определение молярной массы с точностью до ± 1 г/моль 4 балла

Определение молярной массы с точностью до ± 0.5 г/моль 6 баллов

ИТОГО: 15 баллов