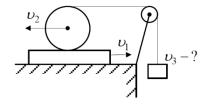
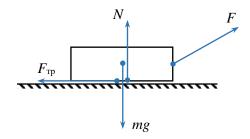

МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

ПО ФИЗИКЕ 2019–2020 уч. г.


ВТОРОЕ ЗАОЧНОЕ ЗАДАНИЕ. 10 КЛАСС

ТЕСТОВЫЕ ЗАДАНИЯ

Задание 1. Вагон движется со скоростью 10 км/ч. По периметру вагона бегает мышка со скоростью 10 км/ч относительно вагона. Как выглядит траектория движения мышки относительно земли?



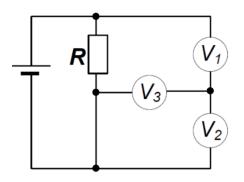
Задание 2. В механической системе, изображенной на рисунке, доска движется по горизонтальной поверхности со скоростью $v_1=2$ м/с. Цилиндр катится без проскальзывания со скоростью $v_2=1$ м/с относительно доски, наматывая на себя нить. С какой скоростью v_3 движется груз?

- A) 0 m/c;
- Б) 1 м/c;
- B) 2 m/c;
- Γ) 4 m/c;
- Д) 6 м/с.

Задание 3. Сани равномерно перемещают по горизонтальной поверхности, прикладывая к веревке силу F под углом к горизонту. Сравните модули работ всех сил, действующих на сани.

A)
$$A_F > A_{Tp} > A_N = A_{mg} = 0$$
;

Б)
$$A_F > A_{\rm Tp} > A_N > A_{mg}$$
;


B)
$$A_F > A_{mq} = A_N > A_{TD}$$
;

$$\Gamma)\,A_F=A_{\rm rp}>A_{mg}=A_N=0.$$

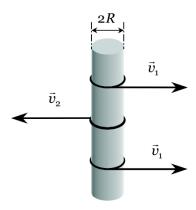
Задание 4. Большой и маленький кубики подвешены на одинаковых нитях к потолку. Кубики сделаны из одного материала, а их начальная температура 100°C. Какой кубик остынет быстрее, если комнатная температура равна 25°C?

- А) Большой кубик;
- Б) маленький кубик;
- В) одновременно остынут до 25°С;
- Г) недостаточно данных.

Задание 5. Электрическая цепь содержит идеальную батарейку с напряжением 6 B, резистор с сопротивлением R и три одинаковых вольтметра. Определите показания вольтметров.

A)
$$U_1 = 3$$
 B, $U_2 = U_3 = 1,5$ B;

Б)
$$U_1 = U_2 = 3$$
 В, $U_3 = 0$;


B)
$$U_1 = 4$$
 B, $U_2 = U_3 = 2$ B;

$$\Gamma$$
) $U_1 = U_2 = U_3 = 3$ B.

Все тестовые задания оцениваются в 2 балла.

ЗАДАЧИ С КРАТКИМ ОТВЕТОМ

Задача 1. На цилиндр радиусом R=5 см намотано три нити. Две крайних тянут направо со скоростью $v_1=1\,$ м/с (если смотреть на рисунок, то свободные концы этих ниток расположены перед цилиндром). Среднюю нить тянут налево со скоростью $v_2=3\,$ м/с (свободный конец этой нитки расположен позади цилиндра). Найдите угловую скорость вращения цилиндра ω . Ответ выразите в рад/с, округлите до целого числа.

Задача 2. Тонкостенный герметичный куб массой 1 кг плавает на поверхности воды. Длина ребра куба равна 50 см. При каком минимальном давлении воздуха внутри куба он не утонет, получив пробоину в дне? Ускорение свободного падения считайте равным $10 \, \text{м/c}^2$. Атмосферное давление равно 1 атм. Плотность воды равна 1 г/см³. Ответ выразите в кПа, округлите до десятых.

Задача 3. Металлическая цепочка массой 0.5 кг замкнута в кольцо. К каждому из звеньев цепочки привязан отрезок тонкой легкой нерастяжимой нити одинаковой длины 40 см, и концы этих отрезков соединены в одной точке. Систему вращают с угловой скоростью 8 рад/с, при этом цепочка имеет форму окружности радиусом 10 см, и ось вращения совпадает с осью конуса, образованного цепочкой и нитями. Ускорение свободного падения при расчетах примите равным 10 м/c^2 .

- 1) Найдите силу натяжения цепочки. Ответ выразите в H, округлите до десятых.
- 2) При какой минимальной угловой скорости такое движение возможно? Ответ выразите в рад/с, округлите до целого числа.

Задача 4. В стакане находится горячий напиток. Его масса M и температура 100° С. Напиток охлаждают по следующей методике. В него опускают кусочек льда массой $\frac{M}{9}$ при

- 0°С. После наступления теплового равновесия избыток напитка, который образовался при таянии льда, сливают (масса напитка опять становится равной M). Плотность воды и напитка 1 г/см³, удельная теплоемкость воды и напитка 4200 Дж/(кг · °С), удельная теплота плавления льда 336 кДж/кг. Теплообменом с окружающей средой пренебречь.
- 1) Найдите минимальное количество кусочков льда необходимых для понижения температуры напитка ниже 30°С. (6 баллов)
- 2) Определите концентрацию напитка после его охлаждения. Первоначальную концентрацию напитка считайте равной 1. Ответ округлите до десятых. (4 балла)

Задача 5. Проводник, сопротивление которого равно 2 кОм, состоит из последовательно соединённых угольного стержня и проволоки, имеющих температурные коэффициенты сопротивления $\alpha_1 = -10 \cdot 10^{-3} \text{ K}^{-1}$ и $\alpha_2 = 3 \cdot 10^{-3} \text{ K}^{-1}$ соответственно. Какими следует выбрать сопротивления этих частей R_1 и R_2 при нулевой температуре, чтобы общее сопротивление проводника не зависело от температуры? Сопротивление линейно зависит от температуры: $R = R_0(1 + \alpha t)$. Ответ выразите в Ом, округлите до целого числа.

Комментарий. Сделать два окошка для ввода ответов. В первом окошке подписать $R_1 = (\mathbf{5} \ \mathbf{баллов})$, во втором $R_2 = (\mathbf{5} \ \mathbf{баллов})$.