

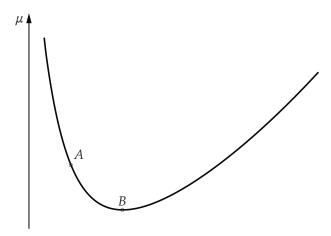
83-я Московская олимпиада школьников по физике 2022 год 10 класс

Условия задач, ответы и критерии оценивания

1. Модель слинки (10 баллов) Фольклор

Несколько (2N+1) одинаковых маленьких шариков соединены одинаковыми невесомыми пружинками в цепочку (см. рисунок, N=3). Пусть длина одной пружинки в недеформированном состоянии равна нулю, диаметр шарика пренебрежимо мал, а $N\gg 1$, тогда такая модельная конфигурация неплохо описывает некоторые свойства успокаивающей игрушки-пружины «слинки».

Известно, что если цепочка шариков с пружинками $(N\gg 1)$ располагается на гладкой горизонтальной поверхности, один из крайних шариков удерживается, а на другой крайний шарик действует горизонтальная сила, равная силе тяжести цепочки, то длина цепочки оказывается равна L_0 . Здесь и далее речь идёт о статическом состоянии цепочки, при котором все шарики цепочки не движутся.



А. (*4 балла*) Чему будет равна длина цепочки, если её подвесить к потолку за один из концов?

В. (6 баллов) На каком расстоянии от потолка будет располагаться нижняя точка цепочки, если оба её конца закрепить на потолке на расстоянии D друг от друга? Какую форму примет цепочка? Назовите вид кривой.

2. КПД автомобиля (7 баллов) Бычков А. И., Крюков П. А.

На рисунке, приведённом ниже (увеличенный вариант на дополнительном листе), вы видите фрагмент модельной зависимости расхода топлива μ (измеряемого в единицах объёма на единицу пройденного пути) некоторого особого автомобиля с двигателем внутреннего сгорания от квадрата его скорости. Расположение оси абсцисс (по которой откладывается величина v^2) неизвестно. Известно только, что она перпендикулярна оси ординат и направлена вправо по рисунку. Масштаб по оси ординат неизвестен, известно только её расположение.

КПД автомобиля, движущегося с некоторой постоянной скоростью, соответствующей т. A на графике, равен 6 %, а КПД автомобиля, движущегося с другой скоростью, соответствующей точке B, равен 18 %. Определите максимально возможный КПД автомобиля в диапазоне скоростей, для которых построен график.

Можно считать, что сила сопротивления воздуха пропорциональна квадрату скорости автомобиля и направлена против скорости, трение качения пренебрежимо мало, колёса автомобиля по дороге не проскальзывают. Коэффициентом полезного действия в этой задаче мы называем долю энергии сгоревшего топлива (в процентах), которая расходуется на поддержание постоянной скорости автомобиля при движении по горизонтальной дороге.

3. Модель миража (9 баллов) Крюков П. А., Бычков А. И.

Нижний мираж — это оптическое явление в атмосфере, при котором мнимое изображение неба и облаков наблюдается ниже поверхности земли, как-бы отражаясь от расположенного на горизонтальной поверхности зеркала. Например, в солнечный день нагретая поверхность горизонтальной асфальтовой дороги на некотором расстоянии от наблюдателя может казаться покрытой лужами (в которых отражается небо и окружающий пейзаж), тогда как на самом деле дорога сухая. Это явление объясняется искривлением световых лучей в неравномерно нагретом воздухе вблизи дороги. В этой задаче можно считать, что вблизи поверхности асфальта лучи распространяются по дугам парабол, как показано на рисунке ниже.

Предполагая, что отклонение показателя преломления воздуха n от единицы на высоте h над дорогой пропорционально концентрации воздуха N(h) на этой высоте: $n(h)-1 \propto N(h)$, определите, на каком расстоянии от себя наблюдатель видит область «мокрого» асфальта.

В этой задаче предлагается считать, что температура воздуха уменьшается линейно с высотой от $50\,^{\circ}\mathrm{C}$ у поверхности дороги до $20\,^{\circ}\mathrm{C}$ на высоте 2 м. Глаза наблюдателя находятся на высоте $1,7\,$ м. При температуре $20\,^{\circ}\mathrm{C}$ показатель преломления воздуха отличается от единицы на величину $\Delta n = 4 \cdot 10^{-4}$.

4. Сжатие, расширение (7 баллов) Крюков П. А.

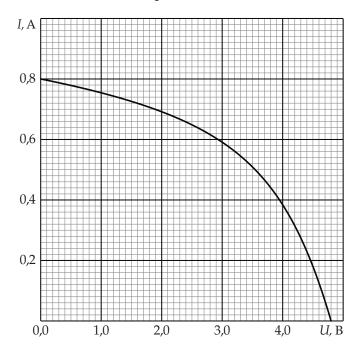
В вертикальном цилиндре, закрытом поршнем, находится некоторое количество идеального газа, молярная теплоёмкость которого при постоянном объёме c_V в условиях этой задачи равна $\frac{5R}{2}$. Конструктивные особенности цилиндра таковы, что поршень может удерживаться неподвижно специальными защёлками в двух положениях 1 и 2, при этом в положении 1 объём газа под поршнем на 1 % больше, чем в положении 2.

Сначала поршень находится в положении 1, температура газа в цилиндре равна температуре окружающей среды. Поршень быстро (так что теплообмен с окружающей средой не успевает произойти) сдвигают в положение 2, в котором поршень фиксируется защёлками. После этого в течение некоторого времени происходит выравнивание температур газа и окружающей среды, а по окончании этого процесса поршень также быстро, как при сжатии газа, возвращается в положение 1, в котором он опять фиксируется защёлками, после чего некоторое время происходит теплообмен с окружающей средой и выравнивание температур. В итоге газ под поршнем возвращается в исходное состояние: его температура и объём становятся такие же, как в начале процесса.

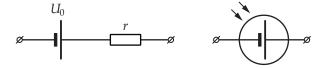
Эта последовательность (иначе говоря, цикл) процессов, которые предлагается считать квазистатическими, повторяется многократно. Температуру окружающей среды можно считать почти постоянной в течение одного цикла.

А. (*3 балла*) Охладится или нагреется воздух, окружающий цилиндр, после многократного повторения описанного цикла?

В. (4 балла) Для одного цикла определите отношение абсолютной величины работы, совершённой газом, к количеству теплоты, которое газ отдаёт окружающей среде на участке охлаждения.


Указание. Для малых изменений параметров идеального газа (T, p, V) из уравнения состояния следует формула:

$$\nu R \Delta T = V \Delta p + p \Delta V,$$


где ν — количество вещества, а R — универсальная газовая постоянная.

5. Источники (8 баллов) Крюков П. А.

На графике, приведённом ниже, можно видеть вольт-амперную характеристику специального источника напряжения — зависимость силы тока I через этот источник от разности потенциалов U положительного и отрицательного полюсов.

ВАХ источника, изображённая на графике, похожа на ВАХ солнечной батареи, поэтому далее мы называем этот источник солнечным, а на схеме ниже обозначаем его батарейкой в круге. Другой источник напряжения (далее называем его обычным) состоит из идеальной батарейки с напряжением $U_0=2.4~\mathrm{B}$ между выводами и резистора сопротивлением $r=3~\mathrm{Om}$, как показано на рисунке слева.

Солнечный и обычный источники можно соединить параллельно или последовательно (разными способами), тогда получится новый источник напряжения. Чему равен ток короткого замыкания этого нового источника? Если к нему подключить резистор сопротивлением R=1 кОм, то чему будет равно напряжение на этом резисторе? Рассмотрите все возможные случаи.